Desarrollo de algoritmos de machine learning para obtención de modelos aerodinámicos basados en datos numéricos y experimentales.
Experiencia necesaria: Conocimientos de programación. Conocimientos de métodos numéricos. Conocimientos de redes neuronales, estimación de errores, análisis de datos. Conocimientos de python y librerias.
Machine learning y modelos de orden reducido
Experiencia necesaria: Programación en python, CFD, machine learning
Aiming to establish a group of CFD experts at UPM supporting industrial R&D in numerical simulation, a series of work activities have been defined between the company ITP (Industria de Turbopropulsores) and the UPM-Numath group (Numerical Mathematics) of the UPM (Polytechnic University of Madrid).
The main objective of the work is to improve the numerical simulation capabilities currently existing in ITP in order to make them more competitive and able to model more quickly and accurately physical phenomena present in increasingly complex turbo-machines.
We are looking for a hardworking and skilled researcher to work on an exciting project in the field of Numerical simulation. You will join an established group working at the forefront of numerical simulations for Computational Fluid Dynamics problems.
The project requires a deep knowledge of numerical simulation, language programming and software development for the solution of the Navier-Stokes equations. Key objectives are the development of algorithms for numerical efficiency, algorithms for data management and the efficiency implementation of those algorithms in the most advanced HPC platforms (Mare Nostrum).
You should be initiative-taking and dynamic, have excellent communication and analytical skills, be a stress-resistant problem solver, independent researcher and be a team player able to meet the highest quality standards.
The position includes a competitive 3-year contract. We also offer to work in a stimulating, young and multicultural environment, and to be part of a dynamic and growing research team at ETSIAE.
Experiencia necesaria: Conocimientos de programación. Conocimientos de métodos numéricos. Conocimientos de redes neuronales, interpolación bayesiana, estimación de errores, análisis de datos.
Experiencia necesaria: Experiencia en simulaciones CFD de flujos compresibles. Aeroacústica. Estabilidad hidrodinámica.
Proyecto GALILEO. Ayuda a la gestión del proyecto. Preparación de documentos técnicos, estudios de mercado, contacto con redes internacionales en Chile y sudamérica relacionado con galileo. Organización de reuniones y eventos
relacionados con el proyecto Galileo.
Copyright 2023 | Numath | Numerical Methods in aerospace technology | All rights reserved.
Terms and Conditions | Privacy Policy | Cookie Policy