Description of the $Re_{\tau} = 200$ turbulent channel flow database

Jesús Garicano-Mena^{a,*}, Binghua Li^{a,b}, Eusebio Valero^a

 ^a Departmento de Matemática Aplicada a la Ingeniería Aeroespacial, ETSI Aeronáutica y del Espacio -Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros, 3, E 28040, Madrid, Spain
^b Center for Engineering and Scientific Computation, School of Aeronautics and Astronautics – Zhejiang University, Zhejiang 310027, China

Abstract

In this document we describe a $Re_h \approx 3600$, $Re_\tau \approx 200$ turbulent channel flow database. This database has been investigated in [1].

Database description

A turbulent channel flows database has been generated by the incompressible **DNS** solver described in [2]. The code follows the paradigm introduced in [3]: it solves for the wall-normal components of velocity *v* and vorticity η . This quantities are Fourier-transformed (de-aliased using the 3/2 rule) along the homogeneous directions, and discretized using explicit compact finite-differences along the wall normal direction. Both the streamwise *u* and spanwise *w* velocity components are retrieved using the continuity equation with the relation $\eta = \frac{\partial w}{\partial x} - \frac{\partial u}{\partial z}$. Time integration is accomplished by an explicit third order, low-storage Runge–Kutta method, combined with an implicit second-order Crank–Nicolson scheme.

The channel walls are planar and the simulations have been conducted under the assumption of constant mass flux.

Email address: jesus.garicano.mena@upm.es (Jesús Garicano-Mena)

^{*}Corresponding author.

The spatial resolution for the standard channel flow mesh is $\Delta x^+ = 6.54$ and $\Delta z^+ = 3.27$ along the homogeneous directions and $\Delta y^+ \in (0.95, 5.18)$ The time-step enforced in the simulation is in both cases $\Delta t = 0.015625$, which corresponds to $\Delta t^+ \approx 0.1$.

Table 1 summarizes the characteristics of the database.

Table 1: Auxiliary database description.

	L_x/δ	L_y/δ	L_z/δ	n_x	n_y	n _z	Re	e _c	<i>u</i> _c		$u_{ au}$	
	π	2	$\pi/2$	96	101	96	367	8.7	0.769	99	0.04233	
_		Forcing			Snapshots stored n_s			Δt^s		Memory [GB]		
-	Cons	Constant Flow Rate			1200				0.15625		32	

The database consists of the following files:

- 1. xyz.dat: This file contains the locations (x, y, z) of the nodes.
- 2. SnapAvgXZN.dat: Each of these files is a snapshot of the $\vec{u}(t_k)$ flow velocities.
- 3. dUdyN.dat: Each of these files contains the $\frac{d\bar{U}}{dy}(t_k)$ profile.
- 4. mean.dat: This file contains the average y profiles.

The associated matlab script loadDB.m illustrates how to load the database in memory.

References

- J. Garicano-Mena, B. Li, E. Ferrer, and E. Valero. A composite dynamic mode decomposition analysis of turbulent channel flows. *Physics of Fluids*, 31(11):115102, 2019.
- [2] P. Luchini and M. Quadrio. A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys., 211(2):551–571, January 2006.
- [3] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177:133–166, 1987.